Teknik Pendingin

Materi Singkat Teknik Pendingin
Pada awalnya untuk pengawetan makanan digunakan es atau salju sejak 1000 tahun sebelum masehi. Pada tahun 1850 mulai dipakai mesin pendingin yang memakai kompressor dengan bahan pendingin udara. Kemudian dipakai bahan pendingin amonia, keburukannya beracun, sampai akhirnya di temukan bahan pendingin freon yang lebih aman dan digunakan sampai sekarang.
1.2 Jenis dan Tipe Mesin pendingin
Jenis dan tipe mesin pendingin disesuaikan dengan kegunaan dan daya yang dimilikinya. Misalnya AC untuk kantor-kantor besar berbeda dengan AC untuk rumah tangga. Begitu juga untuk jenis kulkas.Karena di pasaran sudah tersedia berbagai jenis dan tipe mesin pendingin.

1.2.1 Jenis-jenis Mesin Pendingin
Dari berbagai mesin pendingin yang ada, serta ditinjau dari segi kegunaan dan fungsinya, yang umum kita kenal ada 4 macam mesin pendingin, antara lain :
1.2.1.1 Refrigerant
Jenis ini lebih dikenal dengan sebutan kulkas atau lemari es. Tipe dan kapasitasnya bermacam-macam, dan umumnya digunakan untuk rumah tangga. Fungsinya untuk mendinginkan minuman, mengawetkan bahan makanan, menhasilkan es. Suhu untuk lemari es dipertahankan 3o -100 C
1.2.1.2 Freezer
Jenis yang satu ini tidak berbeda dengan kulkas, hanya saja kapasitas lebih besar, dan suhunya lebih rendah.
1.2.1.3 Air Conditioner (AC)
Manusia selalu berusaha untuk membuat keadaan disekelilingnya menjadi lebih baik dan suasana lebih nyaman. Air Conditioner adalah salah satu yang dapat memenuhi kebutuhan itu. Dengan membuat keadaan menjadi lebih sejuk. Sesuai dengan namanya air conditioner berarti pengatur udara diperlukan sekurangnya 3 peraturan
a. Suhu udara
Adalah derajat panas atau dingin dari udara yang diukur dengan thermo-meter. Udara harus didinginkan untuk membuat suhu di dalam ruangan menjadi sejuk. Suhu kamar yang sejuk dan nyaman adalah 240 – 270 C
b. Kelembaban
Untuk mendapatkan udara yang sejuk dan nyaman di dalam ruangan, kita harus mengatur kelembaban udara dengan mengambil uap air dari udara atau menambahkan uap air pada udara yang mengalir di dalam ruangan. Jumlah uap air di dalam udara dinyatakan dengan %. Jadi AC selain dapat menyejukkan udara juga dapat membersihkan udara yang ada dalam ruangan. AC rumah tangga dapat dioperasikan dengan listrik satu phase pada 110 Volt atau 220 Volt. Kapasitas mulai 4.000 s/d 25.000 BTU/h.
1.2.1.4 Kipas Angin
Walaupun pada dasarnya peralatan yang satu ini tidak menghasilkan udara atau suhu yang dingin sebagaimana kulkas atau AC, tetapi putaran dan sistem kerjanya mirip dengan kerja dari kedua peralatan diatas.

Sistem Penyaluran Udara

Udara di dalam Mesin Diesel digunakan untuk pembakaran bahan bakar ( solar). Kabut solar dicampur dengan udara pada tekanan dan suhu tinggi sehingga akan terjadi pembakaran yang menghasilkan tenaga. Perbandingan antara kabut solar dan volume diatur sedemikian sehingga pada keadaan beban penuh, kabut solar habis terbakar oleh udara yang dimasukan ke dalam silinder. Bahan bakar dan udara harus dalam perbandingan yang tepat, kekurangan udara akan mengakibatkan merusak mesin, yaitu mengakibatkan pembakaran kurang sempurna dan terjadilah kerak ( arang) di dalam silinder.

Sistem penyaluran udara juga dapat menyebabkan Hal-hal yang umumnya dapat merusak mesin antara lain :
a.      Penyetelan tekanan pengaturan nozzale yang terlalu tinggi
b.     Mesin bekerja lama dengan beban rendah
c.      Mesin sering bekerja tanpa beban
d.     Saluran pembuangan ( knalpot) yang kotor, akan menghambat keluarnya asap dan mempercepta kenaikan kadar arang dalam saluran dan akhirnya mempercepat terjadinya kerak

Dalam praktek sistem penyaluran udara kelebihan bahan bakar dibanding dengan jumlah udara ini ditandai dengan asap hitam ke luar dari knalpot. Untuk keperluan start mesin, orang membuat agar udara yang dimasukan kedalam mesin tidak dingin ( hangat), sebab udara dingin sukar bersenyawa dengan bahan bakar.

Agar Supaya proses pendinginan ini berlangsung efektif, maka perlu dijaga kebersihan dari sirip-sirip silinder.
Udara yang dihembuskan kuat oleh blower disalurkan ke dalam tabung udara dan membawa panas ke luar sirip. Harus diusahakan agar udara panas ini tidak tertarik lagi oleh blower . Udara yang masuk haruslah udara luar yang masih segar dan dingin perlu juga untuk membersihkan jendela-jendeka kaca yang dipasang di ruang mesin.

Gb. 5 Sistem sirkulasi udara mesin dengan turbo chrager.

Sistem Pendingin

Sistem pendinginan sangat penting artinya bagi keawetan suatu mesin, pada waktu berjalan mesin akan menjadi panas, karena proses pembakaran di dalam silinder, mesin yang terlalu panas, selain cepat rusak juga out put tenaganya kurang maksimal maka diperlukan pendinginan, umumnya sistem pendinginan dibagi menjadi dua macam, yaitu :
                        a.   Sistem pendinginan air
                        b.   Sistem pendinginan udara
Air memasuki blok silinder dari bagian bawah silinder, mengalir melalui saluran-saluran blok silinder terus ke atas menuju silinder head. Air menyerap panas dari mesin sehingga suhu air nai air yang panas ini cenderung mengalir karena perbedaan berat jenis. Air semakin menjadi panas sewaktu berada di sekitar kepala silinder, air yang telah panas harus didinginkan kembali.
Apabila sampai mendidih hal ini menunjukkan adanya gangguan dalam sistem pendinginan tersebut.
Air mengalir ke bawah dari bagian atas radiator melalui pipa-pipa radiator, udara dihembuskan melintasi radiator ke arah depan genset, terjadilah proses pendinginan udara, udara ini menghembus keras karena adanya kipas yang berputar di belakang radiator. Pada saat air sampai di bagian bawah radiator, air menjadi dingin dan masuk kembali ke blok silinder dari bawah untuk mendinginkan mesin.
Demikianlah proses pendinginan berulang dan terjadilah sirkulasi air pendinginan. Bagaimanapun juga ada sebagain air yang menguap.
Maka setiap kali perlu diperiksa permukaan air pendinginan ini. Apabila perlu harus ditambah supaya alran air dapat berjalan lebih cepat, harus ada pompa air yang dipergunakan untuk mendorong air mengalir sehingga dengan demikian daya pendinginan dapat di percapat, sehingga sistem pendingin tersebut merupakan suatu cara pendinginan yang baik
b.  Sistem Pendinginan Udara

Berbeda dengan sistem pendinginan air, di sini silinder-silinder tidak ditempatkan dalam suatu blok silinder melainkan pada tiap silinder diberi semacam sirip, gunanya sirip ialah untuk menyerap panas dari silinder kepala dengan sirip-sirip ini berarti memperluas permukaan yang dapat menyerap panas tersebut dapat dilepaskan ke luar bersama udara yang dihembuskan dengan kuat oleh kipas atau blower.

JENIS-JENIS BOILER

Boiler merupakan bejana tertutup dimana panas pembakaran dialirkan ke air sampai terbentuk air panas atau steam berupa energi kerja. Air adalah media yang berguna dan murah untuk mengalirkan panas ke suatu proses. Air panas atau steam pada tekanan dan suhu tertentu mempunyai nilai energi yang kemudian digunakan untuk mengalirkan panas dalam bentuk energi kalor ke suatu proses. Jika air didihkan sampai menjadi steam, maka volumenya akan meningkat sekitar 1600 kali, menghasilkan tenaga yang menyerupai bubuk mesiu yang mudah meledak, sehingga sistem boiler merupakan peralatan yang harus dikelola dan dijaga dengan sangat baik.
1.1. Proses Kerja Boiler
Energi kalor yang dibangkitkan dalam sistem boiler memiliki nilai tekanan, temperatur, dan laju aliran yang menentukan pemanfaatan steam yang akan digunakan. Berdasarkan ketiga hal tersebut sistem boiler mengenal keadaan tekanan-temperatur rendah (low pressure/LP), dan tekanan-temperatur tinggi (high pressure/HP), dengan perbedaan itu pemanfaatan steam yang keluar dari sistem boiler dimanfaatkan dalam suatu proses untuk memanasakan cairan dan menjalankan suatu mesin (commercial  and industrial boilers), atau membangkitkan energi listrik dengan merubah energi kalor menjadi energi mekanik kemudian memutar generator sehingga menghasilkan energi listrik (power boilers). Namun, ada juga yang menggabungkan kedua sistem boiler tersebut, yang memanfaatkan tekanan-temperatur tinggi untuk membangkitkan energi listrik, kemudian sisa steam dari turbin dengan keadaan tekanan-temperatur rendah dapat dimanfaatkan ke dalam proses industri dengan bantuan heat recovery boiler.
Sistem boiler terdiri dari sistem air umpan, sistem steam, dan sistem bahan bakar. Sistem air umpan menyediakan air untuk boiler secara otomatis sesuai dengan kebutuhan steam. Berbagai kran disediakan untuk keperluan perawatan dan perbaikan dari sistem air umpan, penanganan air umpan diperlukan sebagai bentuk pemeliharaan untuk mencegah terjadi kerusakan dari sistem steam. Sistem steam mengumpulkan dan mengontrol produksi steam dalam boiler. Steam dialirkan melalui sistem pemipaan ke titik pengguna. Pada keseluruhan sistem, tekanan steam diatur menggunakan kran dan dipantau dengan alat pemantau tekanan. Sistem bahan bakar adalah semua perlatan yang digunakan untuk menyediakan bahan bakar untuk menghasilkan panas yang dibutuhkan. Peralatan yang diperlukan pada sistem bahan bakar tergantung pada jenis bahan bakar yang digunakan pada sistem.
Sebelum menjelaskan keanekaragaman boiler, perlu diketahui komponen dari boiler yang mendukung teciptanya steam, berikut komponen-komponen boiler:
  • Furnace
Komponen ini merupakan tempat pembakaran bahan bakar. Beberapa bagian dari furnace siantaranya : refractory, ruang perapian, burner, exhaust for flue gas, charge and discharge door .
  • Steam Drum
Komponen ini merupakan tempat penampungan air panas dan  pembangkitan steam. Steam masih bersifat jenuh (saturated steam).
  • Superheater
Komponen ini merupakan tempat pengeringan steam dan siap dikirim melalui main steam pipe dan siap untuk menggerakkan turbin uap atau menjalankan proses industri.
  • Air Heater
Komponen ini merupakan ruangan pemanas yang digunakan untuk memanaskan udara luar yang diserap untuk meminimalisasi udara yang lembab yang akan masuk ke dalam tungku pembakaran.
  • Economizer
Komponen ini merupakan ruangan pemanas yang digunakan untuk memanaskan air dari air yang terkondensasi dari sistem sebelumnya  maupun air umpan baru.
  • Safety valve
Komponen ini merupakan saluran buang steam jika terjadi keadaan dimana tekanan steam melebihi kemampuan boiler menahan tekanan steam.
  • Blowdown valve
Komponen ini merupakan saluran yang berfungsi membuang endapan yang berada di dalam pipa steam.
1.2. Klasifikasi Boiler
Setelah mengetahui proses singkat, sistem boiler, dan komponen pembentuk sistem boiler, perlu diketahui keanekaragaman boiler. Berbagai bentuk boiler telah berkembang mengikuti kemajuan teknologi dan evaluasi dari produk-produk boiler sebelumnya yang dipengaruhi oleh gas buang boiler yang mempengaruhi lingkungan dan produk steam seperti apa yang akan dihasilkan. Berikut klasifikasi boiler yang telah dikembangkan:
1.2.1.      Berdasarkan tipe pipa :
  • Fire Tube
Tipe boiler pipa api memiliki karakteristik : menghasilkan kapasitas dan tekanan steam yang rendah.
Cara kerja : proses pengapian terjadi didalam pipa, kemudian panas yang dihasilkan dihantarkan langsung kedalam boiler yang berisi air. Besar dan konstruksi boiler mempengaruhi kapasitas dan tekanan yang dihasilkan boiler tersebut.
  • Water Tube

Tipe boiler pipa air memiliki karakteristik : menghasilkan kapasitas dan tekanan steam yang tinggi.

No.
Tipe Boiler
Keuntungan
Kerugian
1
Fire Tube
Proses pemasangan mudah dan cepat, Tidak membutuhkan setting khusus
Tekanan operasi steam terbatas untuk tekanan rendah 18 bar
Investasi awal boiler ini murah
Kapasitas steam relatif kecil (13.5 TPH) jika diabndingkan dengan water tube
Bentuknya lebih compact dan portable
Tempat pembakarannya sulit dijangkau untuk dibersihkan, diperbaiki, dan diperiksa kondisinya.
Tidak membutuhkan area yang besar untuk 1 HP boiler
Nilai effisiensinya rendah, karena banyak energi kalor yang terbuang langsung menuju stack
2
Water Tube
Kapasitas steam besar sampai 450 TPH
Proses konstruksi lebih detail
Tekanan operasi mencapai 100 bar
Investasi awal relatif lebih mahal
Nilai effisiensinya relatif lebih tinggi dari fire tube boiler
Penanganan air yang masuk ke dalam boiler perlu dijaga, karena lebih sensitif untuk sistem ini, perlu komponen pendukung untuk hal ini
Tungku mudah dijangkau untuk melakukan pemeriksaan, pembersihan, dan perbaikan.
Karena mampu menghasilkan kapasitas dan tekanan steam yang lebih besar, maka konstruksinya dibutuhkan area yang luas
Cara Kerja : proses pengapian terjadi diluar pipa, kemudian panas yang dihasilkan memanaskan pipa yang berisi air dan sebelumnya air tersebut dikondisikan terlebih dahulu melalui economizer, kemudian steam yang dihasilkan terlebih dahulu dikumpulkan di dalam sebuah steam-drum. Sampai tekanan dan temperatur sesuai, melalui tahap secondary superheater dan  primary superheater baru steam dilepaskan ke pipa utama distribusi. Didalam pipa air, air yang mengalir harus dikondisikan terhadap mineral atau kandungan lainnya yang larut di dalam air tesebut. Hal ini merupakan faktor utama yang harus diperhatikan terhadap tipe ini.
Keuntungan dan kerugian boiler berdasarkan tipe pipa.

1.2.2.      Berdasarkan bahan bakar yang digunakan :
  • Solid Fuel
Tipe boiler bahan bakar padat memiliki karakteristik : harga bahan baku pembakaran relatif lebih murah dibandingkan dengan boiler yang menggunakan bahan bakar cair dan listrik. Nilai effisiensi dari tipe ini lebih baik jika dibandingkan dengan boiler tipe listrik.
Cara kerja : pemanasan yang terjadi akibat pembakaran antara percampuran bahan bakar padat (batu bara, baggase, rejected product, sampah kota, kayu) dengan oksigen dan sumber panas.
  • Oil Fuel
Tipe boiler bahan bakar cair memiliki karakteristik : harga bahan baku pembakaran paling mahal dibandingkan dengan semua tipe. Nilai effisiensi dari tipe ini lebih baik jika dbandingkan dengan boiler bahan bakar padat dan listrik.
Cara kerja : pemanasan yang terjadi akibat pembakaran antara percampuran bahan bakar cair (solar, IDO, residu, kerosin) dengan oksigen dan sumber panas.
  • Gaseous Fuel
Tipe boiler bahan bakar gas memiliki karakteristik : harga bahan baku pembakaran paling murah dibandingkan dengan semua tipe boiler. Nilai effisiensi dari tipe ini lebih baik jika dibandingkan dengan semua tipe boiler berdasarkan bahan bakar.
Cara kerja : pembakaran yang terjadi akibat percampuran bahan bakar gas (LNG) dengan oksigen dan sumber panas.
  • Electric
Tipe boiler listrik memiliki karakteristik : harga bahan baku pemanasan relatif lebih murah dibandingkan dengan boiler yang menggunakan bahan bakar cair. Nilai effisiensi dari tipe ini paling rendah jika dbandingkan dengan semua tipe boiler berdasarkan bahan bakarnya.
Cara kerja : pemanasan yang terjadi akibat sumber listrik yang menyuplai sumber panas.
Keuntungan dan kerugian boiler berdasarkan bahan bakar.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Solid Fuel
Bahan baku mudah didapatkan.
Sisa pembakaran sulit dibersihkan
Murah konstruksinya.
Sulit mendapatkan bahan baku yang baik.
2
Oil Fuel
Sisa pembakaran tidak banyak dan lebih mudah dibersihkan.
Harga bahan baku paling mahal.
Bahan bakunya mudah didapatkan.
Mahal konstruksinya.
3
Gaseous Fuel
Harga bahan bakar paling murah.
Mahal konstruksinya.
Paling baik nilai effisiensinya.
Sulit didapatkan bahan bakunya, harus ada jalur distribusi.
4
Electric
Paling mudah perawatannya.
Paling buruk nilai effisiensinya.
Mudah konstruksinya dan mudah didapatkan sumbernya.
Temperatur pembakaran paling rendah.
Berdasarkan kegunaan boiler :

  •  Power Boiler
Tipe power boiler memiliki karakteristik : kegunaan utamanya sebagai penghasil steam sebagai pembangkit listrik, dan sisa steam digunakan untuk menjalankan proses industri.
Cara kerja : steam yang dihasilkan boiler ini menggunakan tipe water tube boiler, hasil steam yang dihasilkan memiliki tekanan dan kapasitas yang besar, sehingga mampu memutar steam turbin dan menghasilkan listrik dari generator.
  • Industrial Boiler
Tipe industrial boiler memiliki karakteristik : kegunaan utamanya sebagai penghasil steam atau air panas untuk menjalankan proses industri dan sebagai tambahan pemanas.
Cara kerja : steam yang dihasilkan boiler ini dapat menggunakan tipe water tube atau fire tube boiler, hasil steam yang dihasilkan memiliki kapasitas yang besar dan tekanan yang sedang.
  • Commercial Boiler
Tipe commercial boiler memiliki karakteristik : kegunaan utamanya sebagai penghasil steam atau air panas sebagai pemanas dan sebagai tambahan untuk menjalankan proses operasi komersial.
Cara kerja : steam yang dihasilkan boiler ini dapat menggunakan tipe water tube atau fire tube boiler, hasil steam yang dihasilkan memiliki kapasitas yang besar dan tekanan yang rendah.
  • Residential Boiler
Tipe residential boiler memiliki karakteristik : kegunaan utamanya sebagai penghasil steam atau air panas tekanan rendah yang digunakan untuk perumahan.
Cara kerja : steam yang dihasilkan boiler ini menggunakan tipe fire tube boiler, hasil steam yang dihasilkan memiliki tekanan dan kapasitas yang rendah
  • Heat Recovery Boiler
Tipe heat recovery boiler memiliki karakteristik : kegunaan utamanya sebagai penghasil steam dari uap panas yang tidak terpakai. Hasil steam ini digunakan untuk menjalankan proses industri.
Cara kerja : steam yang dihasilkan boiler ini menggunakan tipe water tube boiler atau fire tube boiler, hasil steam yang dihasilkan memiliki tekanan dan kapasitas yang besar.
Keuntungan dan kerugian boiler berdasarkan kegunaan.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Power Boiler
Dapat menghasilkan listrik dan sisa steam dapat menjalankan proses industri.
Konstruksi awal relatif mahal.
Steam yang dihasilkan memiliki tekanan tinggi
Perlu diperhatikan faktor safety.
2
Industrial Boiler
Penanganan boiler lebih mudah.
Steam yang dihasilkan memiliki tekanan rendah.
Konstruksi awal relatif murah.
3
Commercial Boiler
Penanganan boiler lebih mudah.
Steam yang dihasilkan memiliki tekanan rendah.
Konstruksi awal relatif murah.
4
Residential Boiler
Penanganan boiler lebih mudah.
Steam yang dihasilkan memiliki tekanan rendah.
Konstruksi awal relatif murah.
5
Heat Recovery Boiler
Penanganan boiler lebih mudah.
Steam yang dihasilkan memiliki tekanan rendah.
Konstruksi awal relatif murah.
Berdasarkan konstruksi boiler :

  • Package Boiler
Tipe package boiler memiliki karakteristik : perakitan boiler dilakukan di pabrik pembuat, pengiriman langsung dalam bentuk boiler.
  • Site Erected Boiler
Tipe site erected boiler memiliki karakteristik : perakitan boiler dilakukan di tempat akan berdirinya boiler tersebut, pengiriman dilakukan per komponen.
Keuntungan dan kerugian boiler berdasarkan konstruksi.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Package Boiler
Mudah pengirimannya.
Terbatas tekanan dan kapasitas kerjanya.
Dibutuhkan waktu yang singkat untuk mengoprasikan setelah pengiriman.
Komponen-komponen boiler tergantung pada produsen boiler.
2
Site Erected Boiler
Tekanan dan kapasitas kerjanya dapat disesuaikan keinginan.
Sulit pengirimannya, memakan biaya yang mahal.
Komponen-komponen boiler dapat dipadukan dengan produsen lain.
Perlu waktu yang cukup lama setelah boiler berdiri, setelah proses pengiriman.
Berdasarkan tekanan kerja boiler :

  • Low Pressure Boilers
Tipe low pressure boiler memiliki karakteristik : tipe ini memiliki tekanan steam operasi kurang dari 15 psig atau menghasilkan air panas dengan tekanan dibawah 160 psig atau temperatur dibawah 250 0F
  • High Pressure Boilers
Tipe high pressure boiler memiliki karakteristik : tipe ini memiliki tekanan steam operasi diatas 15 psig atau menghasilkan air panas dengan tekanan diatas 160 psig atau temperatur diatas 250 0F
Keuntungan dan kerugian boiler berdasarkan tekanan kerja.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Low Pressure
Tekanan rendah sehingga penanganannya tidak terlalu rumit
Tekanan yang dihasilkan rendah, tidak dapat membangkitkan listrik.
Area yang dibutuhkan tidak terlalu besar, dan biaya konstruksi tidak lebih mahal dari high pressure boiler
2
High Pressure
Tekanan yang dihasilkan tinggi sehingga dapat membangkitkan listrik dan sisanya dapat didaur ulang untuk mengoprasikan proses industri
Tekanan tinggi sehingga penanganannya perlu diperhatikan aspek keselamatannya.
Area yang dibutuhkan besar dan biaya konstruksi lebih mahal dari low pressure boiler

Berdasarkan cara pembakaran bahan bakar :

  • Stoker Combustion
Tipe stoker combustion memiliki karakteristik : tipe ini memanfaatkan bahan bakar padat untuk melakukan pembakaran, bahan bakar padat dimasukkan kedalam ruang pembakaran melalui conveyor ataupun manual. Tipe ini memiliki sisa pembakaran yang harus diatangani berupa bottom ash atau fly ash yang dapat mencemari lingkungan.
  • Pulverized Coal
Cara kerja : proses ini menghancurkan batu bara dengan ball mill atau roller mill sehingga batu bara memiliki ukuran kurang dari 1 mm. kemudian batu bara berupa bubuk ini disemprotkan ke dalam ruang pembakaran.
  • Fluidized Coal
Cara kerja : proses ini menghancurkan batu bara dengan crusher, sehingga batu bara memiliki ukuran kurang dari 2 mm. Pada proses ini pembakaran dilakukan dalam lapisan pasir, batu bara akan langsung membara jika mengenai pasir.
  • Firing Combustion
Tipe firing memiliki karakteristik : tipe ini memanfaatkan bahan bakar cair, padat, dan gas untuk melakukan pembakaran, pemanasan yang terjadi lebih merata.
Cara kerja : bahan bakar cair digunakan sebagai preliminary firing fuel dimasukkan kedalam ruang pembakaran melalui oil gun. Setelah tercapai temperatur yang sesuai, pembakaran diambil alih oleh coal nozzle atau gas nozzle.
Keuntungan dan kerugian boiler berdasarkan pembakaran.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Stoker Combustion
Konstruksinya relatif sederhana.
Limbah yang diproduksi pembakaran lebih banyak
Panas yang dihasilkan kurang merata jika tidak ada komponen pendukung.
Effisiensi relatif rendah
2
Pulverized
Efisiensi relatif tinggi
Konstruksinya rumit dan membutuhkan dana investasi yang mahal.
Proses pembakaran lebih merata pada tungku pembakaran.
3
Fluidized Bed
Efisiensi relatif tinggi
Konstruksinya rumit dan membutuhkan dana investasi yang mahal.
Suhu pembakaran tidak mencapai suhu 1000 0C sehingga tidak menimbulkan NOX
4
Firing
Limbah yang diproduksi pembakaran lebih sedikit
Konstruksi relatif rumit, perlu nozzle.
Panas yang dihasilkan lebih merata
Effisiensi relatif lebih baik
Berdasarkan material penyusun boiler :

  • Steel
Tipe boiler dari bahan steel memiliki karakteristik : bahan baku utama boiler terbuat menggunakan steel pada daerah steam.
  • Cast Iron
Tipe boiler dari bahan cast iron memiliki karakteristik : bahan baku utama boiler terbuat menggunakan besi corpada daerah steam.
Keuntungan dan kerugian boiler berdasarkan material.
No.
Tipe Boiler
Keuntungan
Kerugian
1
Steel
Kuat dan tahan lama.
Biaya relatif mahal.
Dapat dialiri steam untuk tekanan tinggi.
Konstruksi lebih rumit.
2
Cast Iron
Biaya relatif murah.
Rentan dan mudah rusak.
Konstruksi lebih sederhana.
Dapat dialiri steam untuk tekanan yang terbatas.

Air Sebagai Bahan Utama Cooling Tower & Boiler

Kegunaan air dalam proses industri sangat banyak sekali, selain sebagai air baku pada industri air minum dan pemutar turbin pada pembangkit tenaga listrik, juga sebagai alat bantu utama dalam kerja pada proses – proses industri. Selain itu juga air digunakan sebagai sarana pembersihan ( cleaning ) baik itu cleaning area atau alat – alat produksi yang tidak memerlukan air dengan perlakuan khusus atau cleaning dengan menggunakan air dengan kualitas dan prasyarat tertentu yang membutuhkan sterilisasi dan ketelitian yang tinggi. Dalam hal ini pembahasan difokuskan pada air sebagai penghasil energi kalor dan sebagai penyerap energi kalor ( pendingin ) dalam industri pada umumnya.

A. Air umpan boiler

Boiller adalah tungku dalam berbagai bentuk dan ukuran yang digunakan untuk menghasilkan uap lewat penguapan air untuk dipakai pada pembangkit tenaga listrik lewat turbin, proses kimia, dan pemanasan dalam produksi.

Sistem kerjanya yaitu air diubah menjadi uap. Panas disalurkan ke air dalam boiler, dan uap yang dihasilkan terus – menerus. Feed water boiler dikirim ke boiler untuk menggantikan uap yang hilang. Saat uap meninggalkan air boiler, partikel padat yang terlarut semula dalam feed water boiler tertinggal.

Partikel padat yang tertinggal menjadi makin terkonsentrasi, dan pada saatnya mencapai suatu level dimana konsentrasi lebih lanjut akan menyebabkan kerak atau endapan untuk membentuk pada logam boiler.

Ketidaksesuaian kriteria air umpan boiler menurut baku mutu diatas akan mempengaruhi berbagai hal, misalnya :

1. Korosi

Peristiwa korosi adalah peristiwa elektrokimia, dimana logam berubah menjadi bentuk asalnya akibat dari oksidasi yang disebabkan berikatannya oksigen dengan logam, atau kerugian logam disebabkan oleh akibat beberapa kimia

Penyebab korosi Boiller:

  • Oksigen Terlarut
  • Alkalinity ( Korosi pH tinggi pada Boiler tekanan tinggi )
  • Karbon dioksida ( korosi asam karbonat pada jalur kondensat )
  • Korosi khelate ( EDTA sebagai pengolahan pencegah kerak )

Akibat dari peristiwa korosi adalah penipisan dinding pada permukaan boiler sehingga dapat menyebabkan pipa pecah atau bocor.

2. Kerak

Pengerakan pada sistem boiler :

  • Pengendapan hardness feedwater dan mineral lainnya
  •  Kejenuhan berlebih dari partikel padat terlarut ( TDS ) mengakibatkan tegangan permukaan tinggi dan gelembung sulit pecah
  • Kerak boiler yang lazim : CaCO3, Ca3 (PO4)2, Mg(OH)2, MgSiO3, SiO2, Fe2(CO3)3, FePO4

3. Endapan

Pembekuan material non mineral pada boiler, umumnya berasal dari:

  • Oksida besi sebagai produk korosi
  • Materi organic ( kotoran – bio, minyak dan getah ), Boiler bersifat alkalinity jika terkena gliserida maka akan terjadi reaksi penyabunan.
  • Partikel padat tersuspensi dari feedwater ( tanah endapan dan pasir )

Dari peristiwa – peristiwa ini mengakibatkan terbentuknya deposit pada pipa superheater, menyebabkan peristiwa overheating dan pecahnya pipa, terbentuknya deposit pada sirip turbin, menyebabkan turunnya effisiensi

B. Air pendingin dan sirkulasi sebagai Cooling tower dan Chiller

Colling tower atau menara pendingin adalah suatu sistem pendinginan dengan prinsip air yang disirkulasikan. Air dipakai sebagai medium pendingin, misalnya pendingin condenser, AC, diesel generator ataupun mesin – mesin lainnya.

Jika air mendinginkan suatu unit mesin maka hal ini akan berakibat air pendingin tersebut akan naik temperaturnya, misalnya air dengan temperature awal ( T1 ) setelah digunakan untuk mendinginkan mesin maka temperaturnya berubah menjadi ( T2 ). Disini fungsi cooling tower adalah untuk mendinginkan kembali T2 menjadi T1 dengan blower / fan dengan bantuan angin. Demikian proses tersebut berulang secara terus menerus.

Sedangkan pada chiller temperature yang dibutuhkan relative lebih rendah dibandingkan penggunaan Colling tower.

Beda antara cooling dan chiller adalah pada sistem yang digunakan. Maksudnya, bila cooling adalah sistem terbuka sedangkan pada chiller adalah sistem tertutup sehingga proses penguapan lebih rendah dibandingkan dengan sistem terbuka.

Sistem air cooling dapat dikategorikan dua tipe dasar, sebagai berikut :

1. Sistem air cooling satu aliran

Sistem air cooling satu arah adalah satu diantara aliran air yang hanya melewati satu kali penukar panas. Dan lalu dibuang kepembuangan atau tempat laindalam proses.

Sistem tipe ini mempergunakan banyak volume air. Tidak ada penguapan dan mineral yang terkandung didalam air masuk dan keluar penukar panas. Sistem air cooling satu arah biasa digunakan pada terminal tenaga besar dalam situasi tertutup dari air laut atau air sungai dimana persediaan air cukup tinggi.

2. Sistem air cooling sirkulasi

Pada sistem sirkulasi terbuka ini, air secara berkesinambungan bersikulasi melewati peralatan yang akan didinginkan dan menyambung secara seri. Transfer panas dari peralatan ke air, dan menyebabkan terjadinya penguapan ke udara. Penguapan menambah konsentrasi dan padatan mineral dalam air dan ini adalah efek kombinasi dari penguapan dan endapan, yang merupakan konstribusi dari banyak masalah dalam pengolahan dengan sistem sirkulasi terbuka.

Pada peristiwa sirkulasi air ini, akan terjadi proses – proses sebagai berikut :

a. Pendinginan air cooling tower adakah atas dasar penguapan ( Evaporasi )

Pada peristiwa fisika dikenal prinsip “ jumlah kalor yang diterima = jumlah kalor yang dilepaskan “. Kalor untuk melakukan pendinginan dari T2 menjadi T1 sama dengan kalor penguapan atau dengan kata lain air tersebut menjadi dingin dikarenakan sebagian dari air tersebut menguap.

Untuk cooling tower, besarnya penguapan dapat dihitung bila diketahui kapasitas pompa sirkulasi ( m3/jam )

b. Pada air Cooling tower terjadi pemekatan Garam.

Dengan adanya penguapan maka lama kelamaan seluruh mineral yang tidak dapat menguap akan berkumpul sehingga terjadi pemekatan. Dengan banyaknya mineral yang terkandung pada air Cooling tower perlu dilakukan proses Bleed Off dan penambahan air make up. Air yang menguap adalah air yang murni bebas dari garam – garam mineral dengan konsentrasi = 0. Pada cooling tower dapat diketahui siklus air pada unit cooling tower adalah dengan cara :

Dengan rumus

Cycle = Tower water chloride

Make up water chloride

Tanpa menggunakan parameter khlorida, siklus dapat diketahui dengan membaca konduktivity, yaitu dengan membandingkan konduktivity air tower dengan konduktivity air make up.

Masalah yang sering timbul dalam pada seluruh sistem air cooling adalah:

  • Korosif

Pada pH yang rendah menyebabkan terjadinya korosi pada logam. Begitu juga nitrifying. Penyebab lain adalah dengan adanya bakteri yang dapat menghasilkan asam sulfat. Bakteri yang memiliki kemampuan untuk mengubah hydrogen sulfide menjadi sulfur kemudian mengubah menjadi asam sulfat. Bakteri ini menyerang logam besi, logam lunak dan steiless steel, hidup sebagai anaerobic ( tanpa udara )

  • Kerak

Pembentukan kerak diakibatkan oleh kandungan padatan terlarut dan material anorganik yang mencapai limit control.

Metode yang digunakan untuk mencegah terjadinya pembentukan kerak antara lain :

1. Menghambat kerak dengan mengontrol pH

Dalam keadaan asam lemah ( kira – kira pH 6,5 ). Asam sulfat yang paling sering digunakan untuk ini, memiliki dua efek dengan memelihara pH dalam daerah yang benar dan mengubah kalsium karbonat, ini memperkecil resiko terbentuknya kerak kalsium sulfat. Ini memperkecil resiko terbentuknya kerak kalsium karbonat dan membiarkan cycle yang tinggi dari konsentrasi dalam sistem.
Mengontrol kerak dengan bleed off

Bleed off pada sirkulasi air cooling terbuka sangat penting untuk memastikan bahwa air tidak pekat sebagai perbandingan untuk mengurangi kelarutan dari garam mineral yang kritis. Jika kelarutan ini berkurang kerak akan terbentuk pada penukar panas.
Mengontrol kerak dengan bahan kimia penghambat kerak.

Bahan kimia umumnya berasal dari organic polimer, yaitu polyacrilik dan polyacrilik buatan.

  • Masalah mikrobiologi

Microorganisme juga mampu membentuk deposit pada sembarangan permukaan. Hampir semua jasad renik ini menjadi kolektor bagi debu dan kotoran lainnya. Hal ini dapat menyebabkan efektivitas kerja cooling tower menjadi terganggu.

  • Masalah kontaminasi

Keadaan cooling tower yang terbuka dengan udara bebas memungkinkan organisme renik untuk tumbuh dan berkembang pada sistem, belum lagi kualitas air make up yang digunakan.

Cara Kerja Boiler

Boiler pada intinya adalah alat pemanas cairan (biasanya air) agar berada di atas titik didihnya sehingga ia menguap.

Untuk memanaskan nya ada beberapa tipe boiler

  • fire tube di mana api berada dalam tubing-tubing dengan cairan berada di luar.
  • water tube di mana sebaliknya, air berada dalam tubing dengan api berada di luar.

bahan bakar minyak tanah atau solar di pompa dengan tekanan tinggi dan keluar dalam bentuk kabur pada ujung spuyer, di atas spuyer ada diode tegangan tinggi untuk memberikan api supaya minyak yg keluar terbakar, biasanya dibelakang boiler ada photo sel nutuk memonitor api sudah terbakar apa belum kalau tidak terbakar photo sel ini akan mematikan semua mesin bolier agar tidak terjadi semburan minyak yg tidak terbakat, dan sangat berbahaya .

Oke kita coba boiler utk steam turbin (turbin uap)
Boiler umumnya terdiri dari :

  • Ruang pembakaran : tempat bahan bakar dibakar
  • boiler drum : menampung air demineralized mengalirkannya ke tube dan menampung uap jenuh yang kembali.
  • economiser : water tube, posisinya paling jauh dari sumber panas, fungsinya memanaskan air dengan sisa panas agar efisiensi kalor baik.
  • evaporator : water tube yang fungsinya menguapkan air, posisinya biasanya di “tengah”
  • superheater : fungsinya memanaskan uap air menjadi superheated steam (uap panas lanjut)
  • Turbin uap : fungsinya merubah energi panas menjadi energi gerak.
  • condenser : fungsinya merubah fasa uap menjadi air kembali

Naaahh….urutan prosesnya spt ini :

  1. Air demineralized (air tanpa kandungan mineral/air murni) dipompakan ke boiler dari condenser (kita bicara boiler turbin uap yg siklus airnya tertutup) dengan pompa melalui pipa economiser, di economiser , air menerima panas tapi belum menguap/msh fas air.
  2. Air tsb masuk ke boiler drum dan diteruskan ke seluruh water tube evaporator untuk dirubah fasanya menjadi uap jenuh (uap yg lo liat wkt ngerebus air) / (saturated steam) dan kembali lagi ke boiler drum.
  3. Uap di boiler drum dialirkan (uap melalui saluran diatas, sdgkan air dibawah) ke superheater tube yg berada paling dekat dgn sumber panas utk merubah uap jenuh menjadi uap panas lanjut (superheated steam)
  4. superheated steam kmdn dialirkan ke steam turbin untuk menggerakkan blade turbin.
  5. setelah melalui turbin temperatur uap menurun/begitu juga enthalpy nya, fasanya berubah kembali ke uap jenuh & mengalir ke condenser.
  6. condenser fasanya dirubah kembali ke fasa cair dan kemudian dipompakan kembali ke boiler,dan siklusnya kembali spt semula.

 

Boiler Feed Water dengan RO

Air dengan kondisi sbb:
No. Parameter Satuan Feed Water Boiler Water Cooling Water
1. Color – Jernih coklat Jernih
2. Settleable solid – Sedikit banyak Sedikit
3. Conductivity µmhos 146 15100 1530
4. pH – 9 12 8.7
5. TDS ppm 92 9150 912
6. P Alkalinity ppm CaCO_3 24 2520 132
7. T Alkalinity ppm CaCO_3 88 3820 660
8. Ca Hardness ppm CaCO_3 6 49 34
9. Total Hardness ppm CaCO_3 10 60 56
10. Chloride ppm Cl^- 18 100 116
11. Silica ppm SiO_2 14 64 23
12. Total Iron ppm Fe 0.02 1 0.04
13. Phospate ppm PO_4 – 24 -
14. 14. Phosponate ppm PO_4 – -
15. Hydrazine ppm N_2 H_4 – 0.25 -

Data Boiler : Jenis Fire tube; Kapasitas 1 ton/jam, tekanan : 7-9.5 kg/cm2

Pertanyaan:

1. Apakah kondisi ketiga air tersebut memenuhi syarat ?
2. Apabila diinginkan mengolah air (feed water) tersebut untuk boiler feed water untuk boiler kapsitas 1 ton steam /jam bekerja pada tekanan 7-9.5 kg/cm2, parameter apa saja yang harus diturunkan/naikkan?
3. Apakah dengan proses reverse osmosis (RO) hal tsb (no. 2) dapat dilaksanakan?
4. Pre treatment apa saja yang perlu dilakukan bila memakai RO tsb?

jawaban singkat 1
Berdasarkan data
1. Apakah kondisi ketiga air tersebut memenuhi syarat ? –> bisa menimbulkan scaling dan plugging
2. Apabila diinginkan mengolah air (feed water) tersebut untuk boiler feed water untuk boiler kapsitas 1 ton steam /jam bekerja pada tekanan 7-9.5 kg/cm2, parameter apa saja yang harus diturunkan/naikkan? –>Ca, Cl coba lihat Mg. Paling gampang lihat pH
3. Apakah dengan proses reverse osmosis (RO) hal tsb (no. 2) dapat dilaksanakan? –> Bisa, dengan kondisi tertentu (ada pre treatment)
4. Pre treatment apa saja yang perlu dilakukan bila memakai RO tsb? –> umumnya water softener (adding chemical)

Tamabahan point no.3. Akan lebih baik jika menggunakan kombinasi RO dan Ultrafiltrasi sebagai pre-treatment.

Perlu diwaspadai, bahwa penggunaan chemical dlm pretreatment dapat menurunkan life time dari membrane RO (Case chemical yg terbawa ke RO unit). Jika diinginkan, saya bisa menyampaikan konsep kombinasi UF dan RO, beserta roughly cost investment-nya.

Jawaban 2

pemakaian RO untuk memproses feed water menjadi BFW atau penggunaan lain memerlukan pre-treatment. RO ini cukup sensitif terhadap terjadinya scale yang menutup membran, terkecuali sudah ditemukan membran yang tahan banting terhadap kondisi air umpan.Saya tertarik untuk tahu lebih jauh mengenai pre-treatment ini: Adding chemical dan Ultra Filtration (UF). Pre-treatment menggunakan chemical biasanya memakai clarifier, multimedia filter dll yang bisa dikategorikan sebagai cara “konvensional” (?), sedang UF yang seperti apa ya? Apakah ini yang dimaksud dengan intgrated membrane system yang menggabungkan UF dengan RO untuk mengolah air? Akan menarik juga kalau kedua cara tsb diperbandingkan baik cost of
investment+operation, reliability operasinya, apakah kelebihan masing-masing dan tentu kekurangannya kalau ada.
kombinasi UF dan RO, beserta roughly cost investment-nya.

Jawaban 3

tekhnology RO sebagai pre treatment untuk air umpan boiler memang banyak dilakukan saat ini, tetapi dari pengalaman kami hal tersebut biasa dilakukan bila kualitas dari air umpan masuk memiliki TDS >500 ppm. Sedangkan bila air raw waternya hanya 200 ppm akan lebih baik menggunakan Demineralizer plant, baik dari capital cost dan operating costnya.

Pre treatment unit RO memang merupakan suatu yang sangat kritis, artinya jika hal ini tidak didesign secara benar otomatis akan sanagt berpengaruh terhadap kualitas dari sistim RO. Clarifier, Multi Media Filter , Sand Filter dan carbon Filter memang diperuntukkan untuk menurunkan padatan tersusupsensi yang masih tinggi di raw Water, sedangkan carbon filter untuk meremove kandungan dari chlorine yang masih ada di raw water atau untuk menghilangkan chlorine yang memang di inject di pre traetment meski akan dihilangkan dengan injeksi smbs tetap harus dihilangklan kembali dgn carbon filter.Membran dari sisitim RO sangat rentan dgn kandungan chlorin, life time akan berkurang drastis.

Penggunaan Ultra Violet di unit pre treatement sebenarnya mengarah untuk membunuh microorganisma yang akan mengggangu performance membrane, Biological Fouling.Artinya penggunana UV memang bisa di gantikan dengan sodium hypo yang memiliki fungsi sama.

Pengaruh pre treatment terhadap boiler water system. Memang di buku-buku water treatment hand book selalu dikatakan untuk boiler medium pressure cukup dengan menggunakan softener yang intinya hanya menurunkan kesadahan, padahal sesungguhnya deposit yang paling ditakutkan selain scale oleh CaCO3 adalah deposit silika. Dari pengalam saya, memang dengan menggunakan demin plant , dgn minimnya mineral dalam air bisa dikatakan tidak lagi memerlukan chemical treatment lagi selain pH adjuster.